Интернет. Железо. Программы. Обзоры. Операционные системы

Что дают ядра процессора в компьютере. Краткая хроника «ядерной» гонки чипмейкеров, или Как процессор становился многоядерным

Добрый день, уважаемые читатели нашего техноблога. Сегодня у нас не обзор, а некое подобие сравнения какой процессор лучше 2 ядерный или 4 ядерный? Интересно, кто круче себя показывает в 2018 году? Тогда приступим. Сразу скажем, что пальма первенства в большинстве случаев будет за устройством с большим числом физических модулей, но и чипы с 2 ядрами не так просты, как кажутся на первый взгляд.

Многие, наверное уже догадались, что рассматривать мы будем всех текущих представителей от Intel семейства Pentium Coffee Lake и народный «гиперпень» G4560 (Kaby Lake). Насколько модели актуальны в текущем году и стоит ли задуматься о покупке более производительных AMD Ryzen или тех же Core i3 с 4‐мя ядрами.

Семейство AMD Godavari и Bristol Ridge намеренно не рассматривается по одной простой причине – оно не имеет никакого дальнейшего потенциала, да и сама платформа оказалась не самой удачной, как могло предполагаться.

Зачастую эти решения покупаются либо по незнанию, либо «на сдачу» в качестве какой‐нибудь максимально дешевой сборки для интернета и онлайн‐фильмов. Но нас такое положение вещей особо не устраивает.

Отличия 2‐ядерных чипов от 4‐ядерных

Рассмотрим основные моменты, которые отличают первую категорию чипов от второй. На аппаратном уровне можно заметить, что отличается только количество вычислительных блоков. В остальных случаях, ядра объединены высокоскоростной шиной обмена данными, общим контроллером памяти для плодотворной и оперативной работы с ОЗУ.

Зачастую кэш L1 каждого ядра – величина индивидуальная, а вот L2 может быть либо един для всех, либо также индивидуален для каждого блока. Однако в таком случае дополнительно используется уже кэш‐память L3.

В теории 4‐ядерные решения должны быть быстрее и мощнее в 2 раза, поскольку выполняют на 100% больше операций за такт (возьмем за основу идентичную частоту, кэш, техпроцесс и все прочие параметры). Но на практике ситуация меняется совершенно нелинейно.

Но здесь стоит отдать должное: в многопотоке вся сущность 4 ядер раскрывается в полной мере.

Почему 2‐ядерные процессоры все еще популярны?

Если взглянуть на мобильный сегмент электроники, то можно заметить засилье 6–8 ядерных чипов, которые выглядят максимально органично и нагружаются параллельно при выполнении всех задач. Почему так? ОС Android и iOS – довольно молодые системы с высоким уровнем конкуренции, а потому оптимизация каждого приложения – залог успеха продаж девайсов.

С индустрией ПК ситуация иная и вот почему:

Совместимость. При разработке любого ПО разработчики стремятся угодить как новой, так и старой аудитории со слабым железом. На 2‐ядерных процессорах делается больший акцент в ущерб поддержки 8‐ядерных.

Распараллеливание задач. Несмотря на засилье технологий в 2018 году, заставить программу работать с несколькими ядрами и потоками ЦП параллельно все еще не просто. Если речь заходит за просчет нескольких совершенно разных приложений, то вопросов нет, но когда дело касается вычислений внутри одной программы – тут уже хуже: приходится регулярно просчитывать абсолютно разную информацию, при этом не забывая об успехе задач и отсутствии ошибок при вычислениях.

В играх ситуация еще более интересная, поскольку объемы информации разделить на равные «доли» практически нереально. В итоге получаем следующую картину: один вычислительный блок маслает на 100%, остальные 3 – ждут своей очереди.

Преемственность. Каждое новое решение основывается на предыдущих наработках. Писать код с нуля не только дорого, но и зачастую невыгодно центру разработки, поскольку «людям и этого хватит, а пользователей 2‐ядерных чипов все еще львиная доля».

Взять к примеру многие культовые проекты вроде Lineage 2, AION, World of Tanks. Все они создавались на базе древних движков, которые способны адекватно нагрузить лишь одно физическое ядро, а потому здесь основную роль при вычислениях играет только частота чипа.
Финансирование. Далеко не все могут позволить себе создать совершенно новый продукт, рассчитанный не 4,8, 16 потоков. Это слишком дорого, да и в большинстве случаев неоправданно. Взять к примеру ту же культовую GTA V, которая без проблем «съест» и 12 и 16 потоков, не говоря уже о ядрах.

Стоимость ее разработки перевалила за добрые 200 млн долларов, что само по себе уже очень дорого. Да, игра оказалась успешной, поскольку кредит доверия Rockstar в среде игроков был огромен. А если бы это был молодой стартап? Тут уже сами все понимаете.

Нужны ли многоядерные процессоры?

Давайте рассмотрим ситуацию с точки зрения простого обывателя. Большинству пользователей хватает 2 ядер по следующим причинам:

  • невысокие потребности;
  • большинство приложений работает стабильно;
  • игры – не главный приоритет;
  • низкая стоимость сборок;
  • процессоры сами по себе дешевые;
  • большинство покупает готовые решения;
  • некоторые пользователи понятия не имеют, что им продают в магазинах и чувствуют себя прекрасно.

Можно ли играть на 2 ядрах? Да без проблем, что с успехом несколько лет доказывала линейка Intel Core i3 вплоть до 7‐го поколения. Также огромной популярностью пользовались Pentium Kaby Lake, в которые впервые в истории внедрили поддержку Hyper Threading.
Стоит ли сейчас покупать 2 ядра, пусть и с 4‐мя потоками? Исключительно для офисных задач. Эпоха данных чипов постепенно уходит, да и производители начали массово переключаться на 4 полноценных физических ядра, а потому не стоит рассматривать те же Pentium и Core i3 Kaby Lake в долгосрочной перспективе. AMD так и вовсе отказалась от 2‐ядерников.

В наше прогрессивное время, количество ядер играет главенствующую роль в выборе компьютера. Ведь именно благодаря ядрам, расположенным в процессоре, измеряется мощность компьютера, его скорость во время обрабатывания данных и выдачи полученного результата. Расположены ядра в кристалле процессора, и их количество в данный момент может достигать от одного до четырёх.

В то «давнее время», когда ещё не существовало четырёхядерных процессоров, да и двухядерные были в диковинку, скорость мощности компьютера измерялась в тактовой частоте. Процессор обрабатывал всего один поток информации, и как вы понимаете, пока полученный результат обработки доходил до пользователя, проходило энное количество времени. Теперь же многоядерный процессор, с помощью специально предназначенных улучшенных программ, разделяет обработку данных на несколько отдельных, независимых друг от друга потоков, что значительно ускоряет получаемый результат и увеличивает мощностные данные компьютера. Но, важно знать, что если приложение не настроено на работу с многоядерностью, то скорость будет даже ниже, чем у одноядерного процессора с хорошей тактовой частотой. Так как узнать сколько ядер в компьютере?

Центральный процессор – одна из главнейших частей любого компьютера, и определить, сколько ядер в нём, является вполне посильной задачей и для начинающего компьютерного гения, ведь от этого зависит ваше успешное превращение в опытного компьютерного зубра. Итак, определяем, сколько ядер в вашем компьютере.

Приём №1

  • Для этого нажимаем компьютерную мышку с правой стороны, щёлкая на значке «Компьютер», или контекстном меню, расположенном на рабочем столе, на значке «Компьютер». Выбираем пункт «Свойства».

  • С лева открывается окно, найдите пункт «Диспетчер устройств».
  • Для того чтоб раскрыть список процессоров, находящихся в вашем компьютере, нажмите на стрелку, размещённую левее основных пунктов, в том числе пункта «Процессоры».

  • Подсчитав, сколько процессоров находится в списке, вы можете с уверенностью сказать, сколько ядер в процессоре, ведь каждое ядро будет иметь хоть и повторяющуюся, но отдельную запись. В образце, представленном вам, видно, что ядер два.

Этот способ подходит для операционных систем Windows, а вот на процессорах Intel, отличающихся гиперпоточностью (технология Hyper-threading), этот способ, скорее всего, выдаст ошибочное обозначение, ведь в них одно физическое ядро может разделяться на два потока, независимых один от одного. В итоге, программа, которая хороша для одной операционной системы, для этой посчитает каждый независимый поток за отдельное ядро, и вы получите в результате восьмиядерный процессор. Поэтому, если у вас процессор поддерживает технологию Hyper-threading, обратитесь к специальной утилит – диагностике.

Приём №2

Существуют бесплатные программы для любопытствующих о количестве ядер в процессоре. Так, неоплачиваемая программа CPU-Z, вполне справится с поставленной вами задачей. Для того чтоб воспользоваться программой:

  • зайдите на официальный сайт cpuid.com , и скачайте архив с CPU-Z. Лучше воспользоваться версией, которую не нужно устанавливать на компьютер, на этой версии стоит обозначение «no installation».
  • Далее следует распаковать программу и спровоцировать её запуск в исполняемом файле.
  • В открывшемся главном окне этой программы, на вкладке «CPU», в нижней части найдите пункт «Cores». Вот здесь и будет указано точное количество ядер вашего процессора.

Можно узнать, сколько ядер в компьютере с установленной системой Windows, с помощью диспетчера задач.

Приём №3

Очерёдность действий такая:

  • Запускаем диспетчер с помощью клика правой стороны мышки на панели быстрого запуска, обычно расположенной внизу.
  • Откроется окно, ищем в нём пункт «Запустить диспетчер задач»

  • В самом верху диспетчера задач Windows находится вкладка «Быстродействие», вот в ней, с помощью хронологической загрузки центральной памяти и видно количество ядер. Ведь каждое окно и обозначает ядро, показывая его загрузку.

Приём №4

И ещё одна возможность для подсчёта ядер компьютера, для этого нужна будет любая документация на компьютер, с полным перечнем комплектующих деталей. Найдите запись о процессоре. Если процессор относится к AMD, то обратите внимание на символ Х и стоящую рядом цифру. Если стоит Х 2, то значит, вам достался процессор с двумя ядрами, и т.д.

В процессорах Intel количество ядер прописывается словами. Если стоит Core 2 Duo, Dual, то ядра два, если Quad – четыре.

Конечно, можно сосчитать ядра, зайдя на материнскую плату через BIOS, но стоит ли это делать, когда описанные способы дадут вполне чёткий ответ по интересующему вас вопросу, и вы сможете проверить, правду ли сказали вам в магазине и сосчитать, сколько же ядер в вашем компьютере самостоятельно.

P.S. Ну вот и все, теперь мы знаем как узнать сколько ядер в компьютере, даже целых четыре способа, а уж какой применить — это уже ваше решение 😉

Вконтакте

Модуль поиска не установлен.

Одноядерный или двухъядерный?

Виктор Куц

Самым значимым событием последнего времени в области микропроцессоров стало появление в широком доступе CPU, оснащенных двумя вычислительными ядрами. Переход на двухъядерную архитектуру обусловлен тем, что традиционные методы по увеличению производительности процессоров полностью исчерпали себя - процесс наращивания их тактовых частот в последнее время застопорился.

К примеру, в последний год перед появлением двухъядерных процессоров компания Intel смогла увеличить частоты своих CPU на 400 МГц, а AMD и того меньше - всего лишь на 200 МГц. Другие же методы повышения производительности, такие как увеличение скорости шины и размера кэш-памяти, также утратили былую эффективность. Таким образом, внедрение двухъядерных процессоров, обладающих двумя процессорными ядрами в одном чипе и разделяющими между собой нагрузку, в настоящее время оказалось наиболее логичным шагом на сложном и тернистом пути наращивания производительности современных компьютеров.

Что же представляет собой двухъядерный процессор? В принципе, двухъядерный процессор представляет собой SMP-систему (Symmetric MultiProcessing - симметричная многопроцессорная обработка; термин, обозначающий систему с несколькими равноправными процессорами) и по сути своей не отличается от обыкновенной двухпроцессорной системы, состоящей из двух независимых процессоров. Таким образом, мы получаем все преимущества двухпроцессорных систем без необходимости использования сложных и очень дорогих двухпроцессорных материнских плат.

До этого компанией Intel уже была произведена попытка распараллелить выполняемые инструкции - речь идет о технологии HyperThreading, обеспечивающей разделение ресурсов одного "физического" процессора (кэш, конвейер, исполнительные устройства) между двумя "виртуальными" процессорами. Прирост производительности (в отдельных, оптимизированных для HyperThreading приложениях) при этом составлял примерно 10-20%. Тогда как полноценный двухъядерный процессор, включающий в себя два "честных" физических ядра, обеспечивает прирост производительности системы на все 80-90% и даже больше (естественно, при полном задействовании возможностей обоих его ядер).

Главным инициатором в продвижении двухъядерных процессоров выступила компания AMD, которая в начале 2005 года выпустила первый серверный двухъядерный процессор Opteron. Что касается настольных процессоров, то здесь инициативу перехватила компания Intel, примерно в это же время анонсировавшая процессоры Intel Pentium D и Intel Extreme Edition. Правда, анонс аналогичной линейки процессоров Athlon64 X2 производства AMD запоздал всего лишь на считанные дни.

Двухъядерные процессоры Intel

Первые двухъядерные процессоры Intel Pentium D семейства 8хх были основаны на ядре Smithfield, которое является ничем иным, как двумя ядрами Prescott, объединенными на одном полупроводниковом кристалле. Там же размещается и арбитр, который следит за состоянием системной шины и помогает разделять доступ к ней между ядрами, каждое из которых имеет собственную кэш-память второго уровня объемом по 1 Мбайт. Размер такого кристалла, выполненного по 90-нм техпроцессу, достиг 206 кв. мм, а количество транзисторов приближается к 230 миллионам.

Для продвинутых пользователей и энтузиастов компания Intel предлагает процессоры Pentium Extreme Edition, отличающиеся от Pentium D поддержкой технологии HyperThreading (и разблокированным множителем), благодаря чему они определяются операционной системой как четыре логических процессора. Все остальные функции и технологии обоих процессоров полностью одинаковы. Среди них можно выделить поддержку 64-битного набора команд EM64T (x86-64), технологии энергосбережения EIST (Enhanced Intel SpeedStep), C1E (Enhanced Halt State) и TM2 (Thermal Monitor 2), а также функцию защиты информации NX-bit. Таким образом, немалая ценовая разница между процессорами Pentium D и Pentium EE является по большей части искусственной.

Что касается совместимости, то процессоры на ядре Smithfield потенциально могут быть установлены в любую LGA775 материнскую плату, лишь бы она соответствовала требованиям Intel к модулю питания платы.

Но первый блин, как обычно, вышел комом - во многих приложениях (большинство из которых не оптимизированы под многопоточность) двухъядерные процессоры Pentium D не только не превосходили одноядерные Prescott, работающие на той же тактовой частоте, но иногда и проигрывали им. Очевидно, проблема кроется во взаимодействии ядер через процессорную шину Quad Pumped Bus (при разработке ядра Prescott не было предусмотрено масштабирование его производительности путем увеличения количества ядер).

Устранить недостатки первого поколения двухъядерных процессоров Intel были призваны процессоры на 65-нм ядре Presler (два отдельные ядра Cedar Mill, размещенные на одной подложке), появившиеся в самом начале нынешнего года. Более "тонкий" техпроцесс позволил уменьшить площадь ядер и их энергопотребление, а также повысить тактовые частоты. Двухъядерные процессоры на ядре Presler получили наименование Pentium D с индексами 9хх. Если сравнивать процессоры Pentium D 800-й и 900-й серий, то кроме ощутимого снижения энергопотребления новые процессоры получили удвоение кэш-памяти второго уровня (по 2 Мбайт на ядро вместо 1 Мбайт) и поддержку перспективной технологии виртуализации Vanderpool (Intel Virtualization Technology). Кроме того, был выпущен процессор Pentium Extreme Edition 955 с включенной технологией HyperThreading и работающий на частоте системной шины 1066 МГц.

Официально процессоры на ядре Presler с частотой шины 1066 МГц совместимы только с материнскими платами на чипсетах серии i965 и i975X, тогда как 800-мегагерцевые Pentium D в большинстве случаев заработают на всех системных платах, поддерживающих эту шину. Но, опять же, встает вопрос о питании этих процессоров: термопакет Pentium EE и Pentium D, за исключением младшей модели, составляет 130 Вт, что почти на треть больше, чем у Pentium 4. Согласно заявлениям самой Intel, стабильная работа двухъядерной системы возможна лишь при использовании блоков питания мощностью не менее 400 Вт.

Наиболее эффективными современными десктопными двухъядерными процессорами Intel, без сомнения, являются Intel Core 2 Duo и Core 2 eXtreme (ядро Conroe). Их архитектура развивает базовые принципы архитектуры семейства P6, тем не менее, количество принципиальных нововведений столь велико, что впору говорить о новом, 8-м поколении процессорной архитектуры (P8) компании Intel. Несмотря на более низкую тактовую частоту, они заметно превосходят процессоры семейства Р7 (NetBurst) по производительности в подавляющем большинстве применений - в первую очередь за счет увеличения числа операций, выполняемых в каждом такте, а также за счет снижения потерь, обусловленных большой длиной конвейера P7.

Десктопные процессоры линейки Core 2 Duo выпускаются в нескольких вариантах:
- серия E4xxx - FSB 800 МГц, общий для обоих ядер L2-кэш 2 Мбайт;
- серия E6ххх - FSB 1066 МГц, размер кэша 2 или 4 Мбайт;
- серия X6ххх (eXtreme Edition) - FSB 1066 МГц, размер кэша 4 Мбайт.

Буквенный шифр "E" обозначает диапазон энергопотребления от 55 до 75 ватт, "X" - выше 75 ватт. Core 2 eXtreme отличается от Core 2 Duo лишь только повышенной тактовой частотой.

Все процессоры Conroe используют хорошо отработанные процессорную шину Quad Pumped Bus и разъем LGA775. Что, однако, совсем не означает совместимости со старыми материнскими платами. Помимо поддержки тактовой частоты 1067 МГц, материнские платы для новых процессоров должны содержать новый модуль регулирования напряжения (VRM 11). Этим требованиям соответствуют в основном обновленные версии материнских плат, выполненных на базе чипсетов Intel 975 и 965 серий, а также NVIDIA nForce 5xx Intel Edition и ATI Xpress 3200 Intel Edition.

В ближайшие два года процессоры Intel всех классов (мобильные, десктопные и серверные) будут базироваться на архитектуре Intel Core, а основное развитие будет идти в направлении увеличения числа ядер на кристалле и усовершенствования их внешних интерфейсов. В частности, для рынка настольных ПК таким процессором станет Kentsfield - первый четырехъядерный процессор Intel для сегмента высокопроизводительных настольных ПК.

Двухъядерные процессоры AMD

В линейке двухъядерных процессоров AMD Athlon 64 X2 используются два ядра (Toledo и Manchester) внутри одного кристалла, произведенные по 90-нм техпроцессу с использованием технологии SOI. Каждое из ядер Athlon 64 X2 обладает собственным набором исполнительных устройств и выделенной кэш-памятью второго уровня, контроллер памяти и контроллер шины HyperTransport у них общие. Различия между ядрами - в размере кэша второго уровня: у Toledo кэш L2 имеет объем 1 Мбайт на каждое ядро, а у Manchester этот показатель вдвое меньше (по 512 Кбайт). Все процессоры имеют кэш-память первого уровня 128 Кбайт, их максимальное тепловыделение не превышает 110 Вт. Ядро Toledo состоит примерно из 233,2 млн. транзисторов и имеет площадь около 199 кв. мм. Площадь ядра Manchester заметно меньше - 147 кв. мм., количество транзисторов составляет 157 млн.

Двухъядерные процессоры Athlon64 X2 унаследовали от Athlon64 поддержку технологии энергосбережения Cool`n`Quiet, набор 64-битных расширений AMD64, SSE - SSE3, функцию защиты информации NX-bit.

В отличие от двухъядерных процессоров Intel, работающих только с памятью DDR2, Athlon64 Х2 способны работать как с памятью типа DDR400 (Socket 939), обеспечивающей предельную пропускную способность в 6,4 Гбайт/с, так и с DDR2-800 (Socket AM2), пиковая пропускная способность которой составляет 12,8 Гбайт/с.

На всех достаточно современных материнских платах процессоры Athlon64 X2 работают без каких-либо проблем - в отличие от Intel Pentium D они не предъявляют каких-либо специфических требований к дизайну модуля питания материнской платы.

До самого последнего времени наиболее производительными среди десктопных процессоров считались AMD Athlon64 X2, однако с выходом Intel Core 2 Duo ситуация в корне изменилась - последние стали безусловными лидерами, особенно в игровых и мультимедийных применениях. Кроме того, новые процессоры Intel имеют пониженное энергопотребление и гораздо более эффективные механизмы управления питанием.

Такое положение дел компанию AMD не устроило, и в качестве ответного хода она анонсировала выпуск в середине 2007 года нового 4-ядерного процессора с улучшенной микроархитектурой, известного под названием K8L. Все его ядра будут иметь раздельные L2-кэши по 512 Кбайт и один общий кэш 3-го уровня размером 2 Мбайта (в последующих версиях процессора L3-кэш может быть увеличен). Более подробно перспективная архитектура AMD K8L будет рассмотрена в одном из ближайших номеров нашего журнала.

Одно ядро или два?

Даже беглый взгляд на сегодняшнее состояние рынка десктопных процессоров свидетельствует о том, что эпоха одноядерных процессоров постепенно уходит в прошлое - оба ведущих мировых производителя перешли на выпуск в основном мультиядерных процессоров. Однако программное обеспечение, как это не раз случалось и раньше, пока что отстает от уровня развития "железа". Ведь для того чтобы полностью задействовать возможности несколько процессорных ядер, программное обеспечение должно уметь "разбиваться" на несколько параллельных потоков, обрабатываемых одновременно. Только при таком подходе появляется возможность распределить нагрузки по всем доступным вычислительным ядрам, снижая время вычислений сильнее, чем это можно было сделать путем повышения тактовой частоты. Тогда как подавляющее большинство современных программ не способны использовать все возможности, предоставляемые двухъядерными или, тем более, многоядерными процессорами.

Какие же типы пользовательских приложений наиболее эффективно поддаются распараллеливанию, то есть без особой переработки кода программ позволяют выделить несколько задач (программных потоков), способных исполняться параллельно и, таким образом, загрузить работой сразу несколько процессорных ядер? Ведь только такие приложения обеспечивают сколь-нибудь заметное увеличение производительности от внедрения многоядерных процессоров.

Наибольший выигрыш от мультипроцессорности получают приложения, изначально допускающие естественную паралеллизацию вычислений с разделением данных, например, пакеты реалистичного компьютерного рендеринга - 3DMax и ему подобные. Также можно ожидать хорошего прироста производительности от многопроцессорности в приложениях по кодированию мультимедийных файлов (аудио и видео) из одного формата в другой. Кроме того, хорошо поддаются распараллеливанию задачи редактирования двумерных изображений в графических редакторах вроде популярного Photoshop"а.

Недаром приложения всех перечисленных выше категорий широко используются в тестах, когда хотят показать преимущества виртуальной многопроцессорности Hyper-Threading. А уж о реальной многопроцессорности и говорить нечего.

А вот в современных трехмерных игровых приложениях какого-либо серьезного прироста скорости от нескольких процессоров ожидать не следует. Почему? Потому, что типичную компьютерную игру так просто не распараллелить на два или более процессов. Поэтому второй логический процессор в лучшем случае будет заниматься выполнением лишь вспомогательных задач, что не даст практически никакого прироста производительности. А разработка многопоточной версии игры с самого начала достаточно сложна и требует немалых трудозатрат - порой гораздо больших, чем для создания однопоточной версии. Трудозатраты эти, кстати, могут еще и не окупиться с экономической точки зрения. Ведь производители компьютерных игр традиционно ориентируются на наиболее массовую часть пользователей и начинают использовать новые возможности компьютерного "железа" только в случае его широкой распространенности. Это хорошо заметно на примере использования разработчиками игр возможностей видеокарт. Например, после того как появилась новые видеочипы с поддержкой шейдерных технологий, разработчики игр еще долгое время игнорировали их, ориентируясь на возможности урезанных массовых решений. Так что даже продвинутые игроки, купившие самые "навороченные" видеокарты тех лет, так и не дождались нормальных игр, использующих все их возможности. Примерно аналогичная ситуация с двухъядерными процессорами наблюдается сегодня. Сегодня не так много игр, толком задействующих даже технологию HyperThreading, несмотря на то, что уже не один год вовсю выпускаются массовые процессоры с ее поддержкой.

В офисных приложениях ситуация не столь однозначная. Прежде всего, программы такого класса редко работают в одиночку - гораздо чаще встречается ситуация, когда на компьютере запущено нескольких работающих параллельно офисных приложений. Например, пользователь работает с текстовым редактором, и одновременно происходит загрузка web-сайта в браузер, а также в фоновом режиме осуществляется сканирование на вирусы. Очевидно, что несколько работающих приложений позволяют без особого труда задействовать несколько процессоров и получить прирост производительности. Тем более что все версии Windows XP, включая Home Edition (которой изначально было отказано в поддержке мультиядерных процессоров), уже сейчас способны использовать преимущества двухъядерных процессоров, распределяя программные потоки между ними. Обеспечивая тем самым высокую эффективность исполнения многочисленных фоновых программ.

Таким образом, можно ожидать некоторого эффекта даже от неоптимизированных офисных приложений, если они запускаются параллельно, но вот стоит ли такой прирост производительности существенного увеличения стоимости двухъядерного процессора, понять сложно. Кроме того, определенным недостатком двухъядерных процессоров (особенно это касается процессоров Intel Pentium D) является то, что приложения, производительность которых ограничена не вычислительной способностью самого процессора, а скоростью доступа к памяти, могут не так сильно выиграть от наличия нескольких ядер.

Заключение

Несомненно, что будущее определенно за многоядерными процессорами, однако сегодня, когда большая часть существующего программного обеспечения не оптимизирована под новые процессоры, достоинства их не столь очевидны, как пытаются показать производители в своих рекламных материалах. Да, чуть позже, когда произойдет резкое увеличение количества приложений, поддерживающих многоядерные процессоры (в первую очередь это касается 3D-игр, в которых CPU нового поколения помогут существенно разгрузить графическую систему), приобретение их будет целесообразно, но сейчас... Давно известно, что покупка процессоров "на вырост" - далеко не самое эффективное вложение средств.

С другой стороны, прогресс стремителен, а для нормального человека ежегодная смена компьютера - это, пожалуй, перебор. Таким образом, всем обладателям достаточно современных систем на базе одноядерных процессоров в ближайшее время волноваться особо не стоит - ваши системы еще какое-то время будут "на уровне", тогда как тем, кто собирается приобрести новый компьютер, мы бы все-таки порекомендовали обратить свое внимание на относительно недорогие младшие модели двухъядерных процессоров.


…в процессе развития количество ядер будет становиться всё больше и больше.

(Разработчики Intel )

Краткая хроника «ядерной» гонки чипмейкеров, или Как процессор становился

1999 г. – анонсирован первый в мире 2-ядерный CPU – серверный RISC -процессор IBM Power 4 .

Стартовала эпоха многоядерных процессоров!

2001 г. – начались продажи 2-ядерных процессоров IBM Power 4 .

2002 г. – о перспективах использования двух ядер в своих процессорах архитектуры K8 заявила компания AMD . Практически одновременно с аналогичным заявлением выступила Intel .

Декабрь 2002 г. – вышли первые десктопные Intel Pentium 4 , поддерживающие «виртуальную» 2-ядерность – технологию Hyper-Threading .

2004 г. IBM выпустила второе поколение своих 2-ядерных процессоров – IBM Power 5 . Каждое из ядер Power 5 поддерживает одновременное выполнение двух программных потоков (то есть снабжено аналогом Hyper-Threading ).

18 апреля 2005 г. Intel выпустила первый в мире настольный 2-ядерный процессор Pentium Extreme Edition 840 (кодовое название – Smithfield ). Выполнен с использованием 90-нм технологии.

21 апреля 2005 г. AMD Athlon 64 X2 (кодовое название – Toledo ) с тактовой частотой от 2,0 до 2,4 ГГц. Выполнены с использованием 90-нм технологии.

1 августа 2005 г. AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Manchester ) с тактовой частотой от 2,0 до 2,4 ГГц. Выполнены с использованием 90-нм технологии.

В течение второго полугодия 2005 г. Intel выпускает:

Pentium D 8** (кодовое название – Smithfield ) с тактовой частотой от 2,8 до 3,2 ГГц. Выполнены с использованием 90-нм технологии. 2-ядерные процессоры Pentium D – это два независимых ядра, объединенных на одной кремниевой пластине. Ядра процессоров базируются на архитектуре NetBurst процессоров Pentium 4 ;

– линейку 2-ядерных процессоров Pentium D 9** (кодовое название – Presler ) с тактовой частотой от 2,8 до 3,4 ГГц. Выполнены с использованием 65-нм технологии (следует отметить, что инженеры Intel воспользовались преимуществом 65-нм технологического процесса, который позволяет либо уменьшить площадь кристалла, либо увеличить количество транзисторов).

23 мая 2006 г. AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Windsor ) с тактовой частотой от 2,0 до 3,2 ГГц. Выполнены с использованием 90-нм технологии.

27 июля 2006 г. – компания Intel Intel Core 2 Duo (кодовое название – Conroe ) с тактовой частотой 1,8 – 3,0 ГГц. Выполнены с использованием 65-нм технологического процесса.

27 сентября 2006 г. Intel продемонстрировала прототип 80-ядерного процессора. Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс (предположительно, в 2010 г.).

Ноябрь 2006 г. Intel выпустила линейку 4-ядерных процессоров Intel Core 2 Quad Q6*** (кодовое название – Kentsfield ) с тактовой частотой 2,4 – 2,6 ГГц. Выполнены с использованием 65-нм технологии. Фактически представляют собой сборку из двух кристаллов Conroe в одном корпусе.

5 декабря 2006 г. AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Brisbane ) с тактовой частотой от 1,9 до 2,8 ГГц. Выполнены с использованием 65-нм технологии.

10 сентября 2007 г. AMD выпустила нативные (в виде одного кристалла) 4-ядерные процессоры для серверов AMD Quad-Core Opteron (кодовое название – Barcelona ). Выполнены с использованием 65-нм технологии.

19 ноября 2007 г. AMD выпустила 4-ядерный процессор для домашних компьютеров AMD Quad-Core Phenom . Выполнен с использованием 65-нм технологии.

Ноябрь 2007 г. – компания Intel представила линейку 2-ядерных процессоров Penryn с тактовой частотой от 2,1 до 3,3 ГГц. Выполнены с использованием 45-нм технологии.

6 января 2008 г. – компания Intel выпустила (под марками Core 2 Duo и Core 2 Extreme ) первые партии 2-ядерных процессоров Penryn , выполненных с использованием 45-нм технологии.

Февраль 2008 г. – всемирно известный производитель коммуникационного оборудования, компания Cisco Systems , разработала QuantumFlow – 40- ядерный процессор, предназначенный для установки в сетевое оборудование. Процессор, на разработку которого ушло более 5 лет, способен выполнять до 160 параллельных вычислений. Чип будет использоваться в новых сетевых устройствах.

Март 2008 г. – одноядерные процессоры семейства Pentium 4 (661, 641 и 631) и 2-ядерные семейства Pentium D (945, 935, 925 и 915) сняты с производства.

Март 2008 г. – компания AMD выпустила 3-ядерные процессоры Phenom X3 8400, 8600, 8450, 8650 и 8750 с тактовой частотой от 2,1 до 2,4 ГГц. Выполнены по 65-нм технологии. Фактически эти процессоры представляют собой 4-ядерные Phenom с одним отключенным ядром. Анонсированы эти процессоры были в сентябре 2007 г. По словам разработчика, подобные чипы рассчитаны на тех, «кому двух ядер мало, но за четыре он платить не готов».

Основное достоинство 3-ядерных процессоров заключается в том, что они имеют более низкую по сравнению с 4-ядерными чипами стоимость, но работают быстрее 2-ядерных, таким образом, заполняя ассортиментное пространство между теми и другими. Главный конкурент AMD – корпорация Intel – такие процессоры не выпускает. Впервые о намерении приступить к производству подобных чипов AMD объявила в 2007 г.

Март 2008 г. – компания AMD на выставке 2008 в Ганновере представила свои первые процессоры, изготовленные на базе 45-нм технологического процесса. 4-ядерные чипы под кодовым названием Shanghai для серверов и Deneb для настольных систем были изготовлены на фабрике Fab 36 в Дрездене, Германия. Для их производства использовались 300-мм подложки. Техпроцесс с топологическим уровнем 45 нм был разработан компанией AMD совместно с ее партнером, корпорацией IBM . Новые процессоры Shanghai и Deneb , как и Phenom X4 , являются «по-настоящему» 4-ядерными, так как все четыре ядра размещены на одной кремниевой подложке.

Апрель 2008 г. – компания AMD выпустила 4-ядерные процессоры Phenom X4 – 9550, 9650, 9750 и 9850 – с тактовой частотой 2,2–2,5 ГГц. Выполнены по 65-нм технологии.

Май 2008 г. – выпущен 8-ядерный процессор Cell от IBM . Используется в PlayStation .

Сентябрь 2008 г. – компания Intel Intel Core 2 Quad Q8*** (кодовое название – Yorkfield ) с тактовой частотой 2,3 – 2,5 ГГц. Выполнены с использованием 45-нм технологии.

Сентябрь 2008 г. – компания Intel выпустила линейку 4-ядерных процессоров Intel Core 2 Quad Q9*** (кодовое название – Yorkfield ) с тактовой частотой 2,5 – 3,0 ГГц. Выполнены с использованием 45-нм технологии.

15 сентября 2008 г. – на конференции VMworld , организованной компанией VMware , корпорация Intel официально сообщила о выходе первого в отрасли массового 6-ядерного серверного процессора Xeon 7400 (кодовое название чипов – Dunnington ). Фактически представляет собой три 2-ядерных кристалла, объединенных в одном корпусе. Создан по 45-нм технологии, работает на частоте 2,66 ГГц. Может работать с несколькими операционными системами одновременно. Имеет аппаратную поддержку технологии виртуализации (Intel Virtualization Technology ).

Октябрь 2008 г. – компания Intel разработала 80-ядерный процессор. Изготовлен он по 65-нм технологии, что позволило уменьшить его размеры, но, тем не менее, он остается еще слишком большим для коммерческого использования. Скорее всего, в ближайшие 7 лет процессор будет находиться в стадии доработки. На данный момент существующие технологии не позволяют снизить его энергопотребление и размеры. По мнению специалистов, массовое производство станет возможно только после 2012 г., когда Intel освоит 10-нм техпроцесс. На данный момент известно, что компания планирует введение 32-нм технологии производства процессоров в конце 2009 г., а 22-нм – в 2011 г.

Сейчас процессор не способен даже запустить операционную систему, но это не смущает разработчиков. Происходит масштабная «обкатка» новых функций, которые будут применяться в будущем в процессорах, одной из которых станет smart -функция по отключению неиспользуемых ядер, что положительно скажется на потреблении электроэнергии и тепловыделении.

17 ноября 2008 г. Intel представила линейку 4-ядерных процессоров Intel Core i7 , в основу которых положена микроархитектура нового поколения Nehalem . Процессоры работают на тактовой частоте 2,6 – 3,2 ГГц. Выполнены по 45-нм техпроцессу. Их главной особенностью является то, что контроллер памяти стал составной частью процессора. Это позволило увеличить скорость работы чипа с модулями оперативной памяти и сделало ненужной фронтальную системную шину FSB .

Декабрь 2008 г. – начались поставки 4-ядерного процессора AMD Phenom II 940 (кодовое название – Deneb ). Работает на частоте 3 ГГц, выпускается по техпроцессу 45-нм.

Февраль 2009 г. – компания AMD продемонстрировала первый 6-ядерный серверный процессор. Выполнен с использованием 45-нм технологии. Кодовое название процессора – Istanbul , он придет на смену серверным процессорам Opteron с кодовым названием Shanghai , которые имеют только 4 ядра.

Февраль 2009 г. – компания AMD объявила о начале поставок новых моделей:

– 3-ядерный Phenom II X3 (кодовое название чипа – Toliman ) с тактовой частотой 2,8 ГГц. Выполнен по 45-нм технологии;

– 4-ядерный Phenom II X4 810 (кодовое название чипа – Dragon ) с тактовой частотой 2,6 ГГц. Выполнен по 45-нм технологии.

Апрель 2009 г. – компания Intel начала поставки 32-нм центральных процессоров Westmere производителям , как мобильных систем, так и десктопов. Пока речь не идет о готовых коммерческих решениях, а лишь о первых тестовых экземплярах, основное предназначение устройств – их тестирование для выявления некоторых особенностей работы, чтобы производители смогли отладить конструкцию своих систем, и выпустить в продажу полностью совместимые с новым поколением процессоров компьютеры.

По своей сути, процессоры Westmere представляют собой изготовленную по 32-нм техпроцессу архитектуру Nehalem . Семейство включает в себя две категории микрочипов: решения для настольных компьютеров (кодовое обозначение – Clarkdale ), и устройства для мобильных систем (кодовое обозначение – Arrandale ).

«Мобильные» процессоры Arrandale включают не только само процессорное ядро, но и интегрированную графику. Согласно заверениям разработчиков, такая архитектура позволяет существенно снизить энергопотребление связки процессор–системная логика с интегрированной графикой. Помимо этого, за счет перехода на более прецизионный технологический процесс, снизится стоимость изготовления самих микрочипов, а за счет интеграции большего количества элементов на одном «кристалле» снижается и стоимость готовых мобильных компьютеров.

Поставки серийных экземпляров процессоров Westmere должны стартовать к концу 2009 г.

Апрель 2009 г. – компания AMD выпустила две новые модели 4-ядерных центральных процессоров для ПК – Phenom II X4 955 Black Edition и Phenom II X4 945 . Выполнены по 45-нм технологии.

14 мая 2009 г. – компания Fujitsu объявила о создании самого производительного в мире процессора, способного выполнять до 128 млрд. операций с плавающей запятой в секунду. Процессор SPARC64 VIIIfx (кодовое название Venus ) работает примерно в 2,5 раза быстрее, чем самый мощный чип крупнейшего в мире поставщика микросхем корпорации Intel .

Увеличение скорости работы стало возможным за счет более плотной интеграции схем процессора и перехода на 45-нм технологию. Ученые смогли расположить на кремниевой пластинке площадью 2 см 2 8 вычислительных ядер, вместо 4-х в предыдущих разработках. Снижение уровня топологии также привело к сокращению потребления электроэнергии. В Fujitsu заявляют, что их чип потребляет в 3 раза меньше энергии, чем современные процессоры Intel . Помимо 8 ядер, чип включает в себя контроллер оперативной памяти.

Процессор SPARC64 VIIIfx планируется использовать в новом суперкомпьютере, который будет построен в институте естественных наук RIKEN в Японии. В него войдут 10 тыс. таких чипов. Суперкомпьютер планируется использовать для прогнозирования землетрясений, исследований медицинских препаратов, ракетных двигателей и прочих научных работ. Запустить компьютер планируется до весны 2010 г.

Май 2009 г. – компания AMD представила разогнанную версию графического процессора ATI Radeon HD 4890 с тактовой частотой ядра, увеличенной с 850 МГц до 1 ГГц. Это первый графический процессор, работающий на частоте 1 ГГц. Вычислительная мощность чипа, благодаря увеличению частоты, выросла с 1,36 до 1,6 терафлоп (следует заметить, что видеокарты на базе разогнанной версии Radeon HD 4890 не нуждаются в жидкостном охлаждении – достаточно вентилятора).

Процессор содержит 800 вычислительных ядер, поддерживает видеопамять GDDR5 , , ATI CrossFireX и все другие технологии, присущие современным моделям видеокарт. Чип изготовлен на базе 55-нм технологии.

27 мая 2009 г. – корпорация Intel официально представила новый процессор Xeon под кодовым названием Nehalem-EX . Процессор будет содержать до 8 вычислительных ядер, поддерживая обработку до 16 потоков одновременно. Объем кэш-памяти составит 24МБ .

В Nehalem-EX реализованы новые средства повышения надежности и облегчения технического обслуживания. Процессор унаследовал некоторые функции, которыми обладали чипы Intel Itanium , например, Machine Check Architecture (MCA) Recovery . Также в 8-ядерном процессоре реализованы технологии Turbo Mode и QuickPath Interconnect . Первая технология отвечает за то, чтобы остановленные ядра можно было привести в «боевое состояние» почти мгновенно (что повышает производительность процессора), а вторая технология позволяет ядрам процессора напрямую обращаться к контроллерами ввода/вывода на скорости до 25,5 Гб/сек.

Nehalem-EX способен обеспечить в 9 раз более высокую скорость работы оперативной памяти по сравнению с Intel Xeon 7400 предыдущего поколения.

Новый чип подходит для объединения серверных ресурсов, виртуализации, запуска приложений с интенсивной обработкой данных и для проведения научных исследований. Его массовое производство планируется начать во второй половине 2009 г. Чип будет изготовлен на базе 45-нм технологии с применением формулы транзисторов hi-k . Число транзисторов – 2,3 млрд. Первые системы на базе Nehalem-EX ожидаются в начале 2010 г.

1 июня 2009 г. – компания AMD объявила о начале поставок 6-ядерных серверных процессоров Opteron (кодовое название Istanbul ) для систем с двумя, четырьмя и восемью процессорными гнездами. По данным AMD , 6-ядерные процессоры примерно на 50% быстрее по сравнению с серверными процессорами с четырьмя ядрами. Istanbul будет конкурировать с 6-ядерными процессорами Intel Xeon под кодовым названием Dunnington , появившимися в продаже в сентябре 2008 г. Процессор изготавливается с использованием 45-нм технологии, работает на частоте 2,6 ГГц и обладать 6МБ кэш-памяти третьего уровня.

Август 2009 г. – корпорация IBM представила 8-ядерные процессоры Power7 (каждое ядро способно обрабатывать до 4 потоков команд одновременно).

9 сентября 2009 г. Intel представила новые процессоры – Core i7-860 ( 2,8 ГГц) и Core i7-870 (2,93 ГГц) с возможностью повышения тактовой частоты до 3,46 и 3,6 ГГц соответственно (технология Intel Turbo Boost ). Чипы обладают кэш-памятью объемом 8МБ и интегрированным 2-канальным контроллером оперативной памяти DDR3-1333 . Каждый из представленных 4-ядерных процессоров Core i7 может распознаваться системой как 8-ядерный благодаря технологии Hyper-Threading . Кодовое название чипов – Bloomfield , архитектура – Nehalem , техпроцесс – 45 нм.

22 сентября 2009 г. – компания AMD заявила о намерении выпустить первые 6-ядерные центральные процессоры для ПК. Новинки будут базироваться на 6-ядерной архитектуре серверных процессоров AMD Opteron Istanbul , их кодовое обозначение – Thuban . Как и серверные процессоры Istanbul , Thuban будут представлять собой устройства на основе единого кристалла, при этом изготовление интегральных микросхем будет осуществляться по 45-нм техпроцессу. 6-ядерные процессоры, как и их серверные аналоги, будут состоять из 904 млн. транзисторов, при этом площадь микросхемы составит 346 кв. мм. Предположительно, на рынке процессоры появятся под AMD Phenom II X6 .

22 сентября 2009 г. Intel запускает в производство первые в мире процессоры на базе 32-нм технологии (кодовое название чипов –Westmere ). Новые процессоры будут поддерживать технологии Intel Turbo Boost (увеличение тактовой частоты по требованию) и Hyper-Threading (многопоточная обработка), а также новый набор команд Advanced Encryption Standard (AES ) для ускоренного шифрования и дешифровки. Кроме того, Westmere – первые высокопроизводительные процессоры с графическим ядром, интегрированным на одну кремниевую подложку с вычислительными ядрами.

2 декабря 2009 г. – компания Intel представила экспериментальный 48-ядерный процессор (под предварительным названием «одночиповый облачный компьютер»), представляющий собой миниатюрный дата-центр, умещающийся на кремниевом кристалле площадью не больше почтовой марки. Прототип будет использоваться в дальнейших исследованиях многоядерных систем. Благодаря новейшим технологиям управления электропитанием, включая возможность индивидуального отключения ядер и ограничения скорости их работы, в режиме ожидания чип потребляет всего 25 Вт. В режиме максимальной производительности чип расходует 125 Вт.

23 февраля 2010 г. – компания AMD приступила к поставкам 8- и 12-ядерных серверных процессоров Opteron серии 6100 под кодовым названием Magny-Cours . Эти процессоры рассчитаны на установку в сокет G34 . Уровень их TDP варьируется от 85 до 140 Ватт, что, в свою очередь, зависит от частоты каждого из 12-ти ядер (от 1,7 до 2,4 ГГц в зависимости от модели).

Конец февраля 2010 г. Intel начала реализацию 6-ядерных процессоров Core i7-980 Extreme Edition (кодовое название Gulftown ). Выпускается на базе 32-нм технологии. Тактовая частота составляет 3,33 ГГц (в режиме Turbo скорость работы достигает в 3,60 ГГц).

16 марта 2010 г. Intel представила 32-нм 6-ядерные процессоры Xeon 5600 для серверов и настольных систем (могут работать на максимальной частоте 2,93 ГГц при TDP 95 Вт). Процессоры этого семейства обладают функциями безопасности Intel Advanced Encryption Standard New Instruction (AES-NI ) и Intel Trusted Execution Technology (Intel TXT ), предлагающими ускоренное шифрование и дешифровку данных и аппаратную защиту от вредоносного ПО, а также поддерживают технологии Intel Turbo Boost и Hyper-Threading .

28 марта 2010 г. AMD начала поставки первых 8- и 12-ядерных серверных процессоров на архитектуре x86 . Вошедшие в семейство AMD Opteron 6100 и ранее известные как Magny-Cours , новые чипы предназначены для 2- и 4-сокетных систем с интенсивной обработкой данных. В компании утверждают, что новые процессоры позволяют сократить расходы на электроэнергию, теплоотвод и программное обеспечение, стоимость лицензии на которое зависит от числа процессоров в системе. Новые чипы производятся на базе 45-нм техпроцесса. Процессоры состоят из двух кристаллов, каждый из которых содержит по 4 или 6 ядер соответственно. Стоимость чипов варьируется от $266 за 8-ядерный Opteron 6128 с тактовой частотой 1,5 ГГц и энергопотреблением 65 Вт до $1386 за 12-ядерный Opteron 6176 SE с тактовой частотой 2,4 ГГц и потреблением 105 Вт.

31 марта 2010 г. Intel анонсировала 4-, 6- и 8-ядерные серверные чипы Nehalem-EX Xeon 6500 и Xeon 7500 . Среди прочего, новые чипы впервые поддерживают технологию Machine Check Architecture (MCA ) Recovery , позволяющую восстанавливать систему после фатальной системной ошибки, вовлекая в процесс восстановления полупроводниковые компоненты, операционную систему и менеджер .

25 апреля 2010 г. – компания AMD приступила к поставкам 6-ядерных процессоров AMD Phenom II X6 ( кодовое название Thuban ). Тактовая частота модели составляет 2,8 ГГц. Процессоры выполнены по 45-нм техпроцессу, оснащены технологией Turbo Core . Данная технология выбирает, какое число ядер стоит задействовать. В случае если нагрузка небольшая или средняя, задействуется до 3 ядер, частота которых может повышаться (при этом оставшиеся ядра переводятся в режим ожидания). При запуске многопоточных приложений с интенсивным использованием вычислительных ресурсов, процессор открывает доступ к тем ядрам, которые находятся в резерве.

20 июля 2010 г. – компания Intel выпустила новый 6-ядерный процессор Core i7-970 , предназначенный для настольных игровых и рабочих станций. Чип выполнен с использованием 32-нм технологии. Тактовая частота составляет 3,2 ГГц (множитель частоты заблокирован, чтобы запретить разгон процессора).

Сентябрь 2010 г. – компания Oracle официально представила новейшие серверные процессоры с 16-ю ядрами, принадлежащие семейству микрочипов SPARC SPARC T3 . Изготавливаются интегральные микросхемы по 40-нм технологическому процессу, каждое ядро функционирует на частоте 1,65 ГГц.

Декабрь 2010 г. – группа ученых из Университета Глазго и Массачусетского университета в Лоуэлле во главе с Вандербауведе ( Vanderbauwhede ) создала процессор, способный обрабатывать данные со скоростью в 20 раз превышающей скорость работы современных процессоров для настольных систем. Взяв за основу FPGA (программируемую интегральную схему, или так называемую вентильную матрицу), ученые создали процессор с 1000 ядрами, каждое из которых вычисляло отдельный набор команд. Для этого в чипе FPGA предварительно было создано более 1000 логических цепей. Для того чтобы ускорить работу чипа, инженеры оснастили каждое из ядер выделенной памятью.

Возможности процессора были опробованы на обработке файла с применением алгоритма, используемого в MPEG . Процессор справился с этим на скорости 5 ГБ в секунду, что примерно в 20 раз больше в сравнении со скоростью обработки аналогичного файла самыми мощными настольными процессорами.

По словам Вандербауведе, некоторые производители уже начали выпускать гибридные решения, состоящие из центрального процессора и программируемой матрицы. Такой продукт, например, недавно представила Intel . Ученый считает, что в течение нескольких следующих лет FPGA -решения будут встречаться в потребительской электронике чаще, так как они предлагают высокую производительность и обладают низким потреблением энергии.

«Очевидно, что создание процессоров с тысячами ядер возможно, пишет автор статьи в ZDNet Кларк ( Clark ). – В теории даже нет границ по числу ядер. Однако перед созданием таких процессоров нам предстоит ответить на множество вопросов и, прежде всего, на вопрос, нужно ли нам такое число ядер, каким приложениям может потребоваться такая вычислительная мощность…».

Примечания

1. Кодовое название (обозначение, наименование) – это название ядра процессора.

2. Линейка – это модельный ряд процессоров одной серии. В рамках одной линейки процессоры могут значительно отличаться друг от друга по целому ряду параметров.

3. Чип (англ. chip ) – кристалл; микросхема.

4. Под технологическим процессом (техпроцесс, технология, технология производства микропроцессоров) подразумевается размер затвора транзистора. Например, когда мы говорим – 32-нм технологический процесс , – это означает, что размер затвора транзистора составляет 32 нанометра.

5. Канал – это область транзистора, по которой проходит управляемый ток основных носителей заряда.

Исток – это электрод транзистора, из которого в канал входят основные носители заряда.

Сток – это электрод транзистора, через который из канала уходят основные носители заряда.

Затвор – это электрод транзистора, служащий для регулирования поперечного сечения канала.

6. Фактически, транзисторы – это миниатюрные переключатели, с помощью которых реализуются те самые «нули» и «единицы», составляющие основу . Затвор предназначен для включения и выключения транзистора. Во включенном состоянии транзистор пропускает ток, а в выключенном – нет. Диэлектрик затвора расположен под электродом затвора. Он предназначен для изоляции затвора, когда ток проходит через транзистор.

Более 40 лет для изготовления диэлектриков затвора транзистора использовался диоксид кремния (благодаря легкости его применения в массовом производстве и возможности постоянного повышения производительности транзисторов за счет уменьшения толщины слоя диэлектрика). Специалистам Intel удалось уменьшить толщину слоя диэлектрика до 1,2 нм (что равнозначно всего 5 атомарным слоям!) – такой показатель был достигнут в 65-нанометровой технологии производства.

Однако дальнейшее уменьшение толщины слоя диэлектрика приводит к усилению тока утечки через диэлектрик, в результате чего растут потери тока и тепловыделение. Рост тока утечки через затвор транзистора по мере уменьшения толщины слоя диэлектрика из диоксида кремния является одним из самых труднопреодолимых технических препятствий на пути следования . Для решения этой принципиальной проблемы корпорация Intel заменила диоксид кремния в диэлектрике затвора на тонкий слой из материала high-k на основе гафния. Это позволило уменьшить ток утечки более чем в 10 раз по сравнению с диоксидом кремния. Материал high-k диэлектрика затвора несовместим с традиционными кремниевыми электродами затвора, поэтому в качестве второй составляющей «рецепта» Intel для ее новых транзисторов, создаваемых на основе 45-нанометрового техпроцесса, стала разработка электродов с применением новых металлических материалов. Для изготовления электродов затвора транзистора применяется комбинация различных металлических материалов.

7. Приведенная в статье хронология создания не претендует на всеобъемлющий охват.

Обнаружили неприятную проблему предела тактовой частоты. Достигнув порога в 3 ГГц, разработчики столкнулись с значительным ростом энергопотребления и тепловыделения своих продуктов. Уровень технологий 2004 года не позволял существенно уменьшить размеры транзисторов в кремниевом кристалле и выходом из сложившейся ситуации стала попытка не наращивать частоты, а увеличить количество операций, выполняемых за один такт. Переняв опыт серверных платформ, где многопроцессорная компоновка уже была испытана, было решено объединить два процессора на одном кристалле.

С тех пор прошло немало времени, в широком доступе появились ЦП с двумя, тремя, четырьмя, шестью и даже восемью ядрами. Но основную долю на рынке до сих пор занимают 2 и 4-ядерные модели. Изменить ситуацию пытаются в AMD, но их архитектура Bulldozer не оправдала надежд и бюджетные восьмиядерники все еще не очень популярны в мире. Поэтому вопрос, что лучше: 2 или 4-ядерный процессор , до сих пор остается актуальным.

Разница между 2 и 4-ядерным процессором

На аппаратном уровне основное отличие 2-ядерного процессора от 4-ядерного – количество функциональных блоков. Каждое ядро, по сути, представляет собой отдельный ЦП, оснащенный своими вычислительными узлами. 2 или 4 таких ЦП объединены между собой внутренней скоростной шиной и общим контроллером памяти для взаимодействия с ОЗУ. Другие функциональные узлы тоже могут быть общими: у большинства современных ЦП индивидуальной является кэш-память первого (L1) и второго (L2) уровня, блоки целочисленных вычислений и операций с плавающей запятой. Кэш L3, отличающийся относительно большим объемом, один и доступен всем ядрам. Отдельно можно отметить уже упомянутые AMD FX (а также ЦП Athlon и APU серии A): у них общими являются не только кэш-память и контроллер, но и блоки вычислений с плавающей запятой: каждый такой модуль одновременно принадлежит двум ядрам.

Схема четырехъядерного процессора AMD Athlon

С пользовательской точки зрения разница между 2 и 4-ядерным процессором заключается в количестве задач, которые ЦП может обработать за один такт. При одинаковой архитектуре, теоретическая разница будет составлять 2 раза для 2 и 4 ядер или 4 раза для 2 и 8 ядер, соответственно. Таким образом, при одновременной работе нескольких процессов, увеличение количества должно повлечь за собой рост быстродействия системы. Ведь вместо 2 операций четырехъядерный ЦП за один момент времени сможет выполнять сразу четыре.

Чем обусловлена популярность двухъядерных ЦП

Казалось бы, если увеличение числа ядер влечет за собой рост производительности, то на фоне моделей с четырьмя, шестью или восемью ядрами у двухядерников нет никаких шансов. Тем не менее, мировой лидер на рынке ЦП, компания Intel, ежегодно обновляет ассортимент своей продукции и выпускает новые модели всего с парой ядер (Core i3, Celeron, Pentium). И это на фоне того, что даже в смартфонах и планшетах на такие ЦП пользователи смотрят с недоверием или презрением. Чтобы понять, почему самые популярные модели – именно процессоры с двумя ядрами, следует учесть несколько основных факторов.

Intel Core i3 — самые популярные 2-ядерные процессоры для домашнего ПК

Проблема совместимости . При создании программного обеспечения разработчики стремятся сделать так, чтобы оно могло функционировать как на новых компьютерах, так и уже существующих моделях ЦП и ГП. Учитывая ассортимент на рынке, важно обеспечить, чтобы игра нормально работала и на двух ядрах, и на восьми. Большинство всех существующих домашних ПК оснащены двухъядерным процессором, поэтому поддержке таких компьютеров уделяется больше всего внимания.

Сложность распараллеливания задач . Чтобы обеспечить эффективное задействование всех ядер, вычисления, производимые в процессе работы программы, следует разделить на равные потоки. Например, задача, которая может оптимально задействовать все ядра, выделив каждому из них по одному или два процесса — одновременная компрессия нескольких видеороликов. С играми – сложнее, так как все выполняемые в них операции взаимосвязаны. Несмотря на то, что основную работу выполняет графический процессор видеокарты, информацию для формирования 3d-картинки подготавливает именно ЦП. Сделать так, чтобы каждое ядро обрабатывало свою порцию данных, а затем подавало ее ГП синхронно с другими, достаточно сложно. Чем больше одновременных потоков вычислений нужно обрабатывать – тем тяжелее реализация задачи.

Преемственность технологий . Разработчики программного обеспечения используют для своих новых проектов уже существующие наработки, подвергающиеся неоднократной модернизации. В отдельных случаях доходит до того, что такие технологии уходят корнями в прошлое на 10-15 лет. Разработка, основанная на проекте десятилетней давности, кардинальной переработке для идеальной оптимизации поддается очень неохотно, если не совсем никак. Как следствие, наблюдается неспособность софта рационально использовать аппаратные возможности ПК. Игра S.T.A.L.K.E.R. Зов Припяти, вышедшая в 2009 году (в эпоху расцвета многоядерных ЦП) построена на движке 2001 года, поэтому не умеет нагружать более, чем одно ядро.

S.T.A.L.K.E.R. полноценно задействует только одно ядоро 4-ядерного ЦП

Такая же ситуация и с популярной онлайн-РПГ World of Tanks: движок Big World, на котором она базируется, создан в 2005 году, когда многоядерные ЦП еще не воспринимались, как единственно возможный путь развития.

World of Tanks тоже не умеет распределять нагрузку на ядра равномерно

Финансовые сложности . Следствием этой проблемы является предыдущий пункт. Если создавать каждое приложение с нуля, не используя имеющиеся технологии, его реализация обойдется в баснословные суммы. К примеру, стоимость разработки GTA V составила более 200 млн долларов. При этом, некоторые технологии все равно не были созданы «из чистого листа», а позаимствованы из предыдущих проектов, так как игра писалась под 5 платформ сразу (Sony PS3, PS4, Xbox 360 и One, а также ПК).

GTA V оптимизирована под многоядерность и умеет равномерно загружать процессор

Все эти нюансы не позволяют в полной мере использовать потенциал многоядерных процессоров на практике. Взаимозависимость производителей аппаратного обеспечения и разработчиков софта порождает замкнутый круг.

Какой процессор лучше: 2 или 4-ядерный

Очевидно, что при всех преимуществах потенциал многоядерных процессоров до сих пор остается нереализованным до конца. Некоторые задачи вообще не умеют равномерно распределять нагрузку и работают в один поток, другие – делают это с посредственной эффективностью, и лишь малая доля ПО полноценно взаимодействуют со всеми ядрами. Поэтому вопрос, какой лучше процессор, 2 или 4 ядра , купить, требует внимательного изучения текущей ситуации.

На рынке представлены продукты двух производителей: Intel и AMD, отличающиеся особенностями реализации. Advanced Micro Devices традиционно делают упор на многоядерность, в то время как «Интел» неохотно идут на такой шаг и наращивают количество ядер только если это не приводит к снижению удельной производительности в расчете на ядро (избежать которого очень сложно).

Увеличение количества ядер снижает итоговую производительность каждого из них

Как правило, общая теоретическая и практическая производительность многоядерного ЦП ниже, чем аналогичного (построенного на такой же микроархитектуре, с тем же техпроцессорм) с одним ядром. Вызвано это тем, что ядра используют общие ресурсы, и это не лучшим образом сказывается на быстродействии. Таким образом, нельзя просто приобрести мощный четырех- или шестиъядерный процессор с расчетом на то, что он точно не будет слабее двухъядерника из той же серии. В некоторых ситуациях – будет, при том ощутимо. В качестве примера можно привести запуск старых игр на компьютере с восьмиядерным процессором AMD FX : FPS при этом порой ниже, чем на аналогичном ПК, но с четырехъядерным ЦП.

Нужна ли сегодня многоядерность

Значит ли это, что много ядер не нужно? Несмотря на то, что вывод кажется закономерным — нет. Легкие повседневные задачи (такие как веб-серфинг или работа с несколькими программами одновременно) положительно реагируют на увеличение числа ядер процессора. Именно по этой причине производители смартфонов делают упор на количество, опуская на второй план удельную производительность. Opera (и другие браузеры на движке Chromium), Firefox запускают каждую открытую вкладку в виде отдельного процесса, соответственно, чем больше ядер – тем быстрее переход между вкладками. Файловые менеджеры, офисные программы, проигрыватели – сами по себе не являются ресурсоемкими. Но при потребности часто переключаться между ними многоядерный процессор позволит повысить производительность системы.

Браузер Opera каждой вкладке присваивает отдельный процесс

В компании Intel осознают это, потому технология HuperThreading, позволяющая ядру обрабатывать второй поток силами неиспользуемых ресурсов, появилась еще во времена Pentium 4. Но она не позволяет в полной мере компенсировать недостаток производительности.

В «Диспетчере задач» 2-ядерный процессор с Huper Threading отображается, как 4-ядерный

Создатели игр, тем временем, постепенно наверстывают упущенное. Появление новых поколений консолей Sony Play Station и Microsoft Xbox простимулировало разработчиков уделять больше внимания многоядерности. Обе приставки созданы на базе восьмиядерных чипов AMD, поэтому теперь программистам не нужно тратить уйму сил на оптимизацию при портировании игры на ПК. С ростом популярности этих консолей — с облегчением смогли вздохнуть и те, кто разочаровался в приобретении AMD FX 8xxx. Многоядерники усиленно отвоевывают позиции на рынке, о чем можно убедиться на примере обзоров.

Похожие публикации